ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Christmas Light
’Twas the night before Christmas when all through the house
No electrons were flowing through even my mouse.
All devices were plugged by the chimney with care
With the hope that St. Nikola Tesla would share.
Kie-Yong Choi, Young-Ku Yoon, Soon-Heung Chang
Nuclear Technology | Volume 93 | Number 2 | February 1991 | Pages 195-205
Technical Paper | Nuclear Fuel | doi.org/10.13182/NT91-A34505
Articles are hosted by Taylor and Francis Online.
A new statistical fuel failure model is developed to take into account the effects of damaging environmental conditions and the overall operating history of the fuel elements. The degradation of material properties and damage resistance of the fuel cladding is mainly caused by the combined effects of accumulated dynamic stresses, neutron irradiation, and chemical and stress corrosion at operating temperature. Since the degradation of material properties due to these effects can be considered as a stochastic process, a dynamic reliability function is derived based on the Markov process. Four damage parameters, namely, dynamic stresses, magnitude of power increase from the preceding power level and with ramp rate, and fatigue cycles, are used to build this model. The dynamic reliability function and damage parameters are used to obtain effective damage parameters. The entropy maximization principle is used to generate a probability density function of the effective damage parameters. The entropy minimization principle is applied to determine weighting factors for amalgamation of the failure probabilities due to the respective failure modes. In this way, the effects of operating history, damaging environmental conditions, and damage sequence are more fully taken into account.