ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
No impact from Savannah River radioactive wasps
The news is abuzz with recent news stories about four radioactive wasp nests found at the Department of Energy’s Savannah River Site in South Carolina. The site has been undergoing cleanup operations since the 1990s related to the production of plutonium and tritium for defense purposes during the Cold War. Cleanup activities are expected to continue into the 2060s.
Patrick Michaille, Jean-Claude Moroni, Irma Lambert
Nuclear Technology | Volume 93 | Number 2 | February 1991 | Pages 147-157
Technical Paper | Fission Reactor | doi.org/10.13182/NT91-A34501
Articles are hosted by Taylor and Francis Online.
Dcontamination of stainless steel liquid-metal fast breeder reactor components for reuse in France began with the decontamination of Rapsodie components. At that time, dilute phosphoric acid was used. To cope with additional irradiated components after Phénix came into operation, an extensive study was performed, which led to the selection of a procedure involving two baths. The first bath, alkaline permanganate (AP), is applied for 3 h; the second bath, sulfo-phosphoric acid (SP), is applied for 6 h, both at 60° C. Up to three cycles are repeated until the residual dose rate is sufficiently low. Eight intermediate heat exchangers (IHXs) and two primary pumps from Phénix were decontaminated using this method. Because SP can pickle only a limited depth (∼3 µm), due to the passivation effect of phosphoric acid, and because of the waste treatment problems associated with phosphates, new solutions were explored. One possibility involves improvement of the AP-SP procedure: In the SPm procedure, the AP bath is omitted and the phosphoric concentration is reduced by a factor of 4. A second approach is the use of a new formula, called “SECA, ” a mixture of maleic and citric acid used in reducing conditions (imposed by hydrazine). Since the Phénix and Superphénix waste treatment facilities are not designed to reprocess maleic-citric acid, only the SPm procedure has been used on reactor components. A low-contaminated IHX from Rapsodie served as a test benchmark, not only for the decontamination procedure, but also for the requalification criteria, before the SPm procedure was applied to a highly contaminated IHX from Phénix. Recent results are presented.