ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Hash Hashemian: Visionary leadership
As Dr. Hashem M. “Hash” Hashemian prepares to step into his term as President of the American Nuclear Society, he is clear that he wants to make the most of this unique moment.
A groundswell in public approval of nuclear is finding a home in growing governmental support that is backed by a tailwind of technological innovation. “Now is a good time to be in nuclear,” Hashemian said, as he explained the criticality of this moment and what he hoped to accomplish as president.
Sümer Şahın
Nuclear Technology | Volume 92 | Number 1 | October 1990 | Pages 93-105
Technical Paper | Development of Nuclear Gas Cleaning and Filtering Techniques / Fission Reactor | doi.org/10.13182/NT90-A34489
Articles are hosted by Taylor and Francis Online.
A straightforward numerical-graphical method is applied to achieve a flat fission power density (FPD) in a catalyzed deuterium-deuterium fusion-driven hybrid blanket by using a mixed fuel made of a nuclear waste actinide (244CmCO2) and natural UO2 with variable fractions of fuel components in the radial direction. The FPD could be kept quasi-constant over a relatively long plant lifetime. The peak-to-average FPD increases from 1.071 at start-up to ∼ 1.074 after 18 months’ operation. The plant availability factor is 60% under a first-wall fusion neutron flux load of 1014 x 2.45- and 1014 x 14.1-MeV neutron/cm2.s, corresponding to ∼2.64 MW/m2. This eliminates the fuel management requirements for at least 18 months of plant operation. The investigated blanket breeds high-quality nuclear fuel (239Pu and 245Cm) and also produces electricity. The overall blanket multiplication factor M increases from 9.4 to only 9.8 in 18 months. This allows an optimal exploitation of the nonnuclear part of the power plant.