ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Education and training to support Canadian nuclear workforce development
Along with several other nations, Canada has committed to net-zero emissions by 2050. Part of this plan is tripling nuclear generating capacity. As of 2025, the country has four operating nuclear generating stations with a total of 17 reactors, 16 of which are in the province of Ontario. The Independent Electricity System Operator has recommended that an additional 17,800 MWe of nuclear power be added to Ontario’s grid.
S. Rajendran Pillai, R. Ranganathan, Cherian K. Mathews
Nuclear Technology | Volume 92 | Number 2 | November 1990 | Pages 243-247
Technical Paper | Material | doi.org/10.13182/NT90-A34475
Articles are hosted by Taylor and Francis Online.
Carburization is one of the causes of the degradation of the mechanical properties of structural components in a liquid-metal fast breeder reactor. Sodium carbonate is a carbon-bearing impurity species that can decompose in the sodium coolant of the reactor loops and give rise to highly carburizing conditions. While there are conflicting reports about the temperature of the onset of decomposition of sodium carbonate in liquid sodium, there is general agreement about its instability at elevated temperatures. Two methods have been used to monitor the onset and kinetics of decomposition of sodium carbonate in liquid sodium. In the first method, carbon generated by the decomposition of sodium carbonate reacts with hydrogen (dissolved in sodium) to form methane, and the temperature at which the pressure of methane abruptly increases is determined. In the second method, the increase of carbon activity of sodium, resulting from decomposition of the sodium carbonate, is monitored by an electrochemical carbon meter. In both cases, mutually complementary results are obtained with regard to the temperature of decomposition; however, a significant difference in the kinetics of decomposition is observed, the rate being very high in the presence of hydrogen.