ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Christmas Light
’Twas the night before Christmas when all through the house
No electrons were flowing through even my mouse.
All devices were plugged by the chimney with care
With the hope that St. Nikola Tesla would share.
Tien-Ko Wang, Liang-Chen Shiao, Chia-Lian Tseng
Nuclear Technology | Volume 91 | Number 3 | September 1990 | Pages 413-418
Technical Paper | Technique | doi.org/10.13182/NT90-A34462
Articles are hosted by Taylor and Francis Online.
A method is developed to estimate spent-fuel burnup using gamma-ray spectrometry of the short-lived fission product 140La. The 140La activity was established by reirradiating the spent fuel in a reactor core. Based on the measured 140La activity, burnup values can be deduced by iterative calculations. In this method, the fuel irradiation history is not needed. To verify its validity, burnup values deduced from 140La activities were compared with those deduced from the conventional long-lived I37Cs activities and 134Cs/137Cs activity ratios; good agreement was obtained. This method is applicable to reactors loaded with highly enriched, thin plate-type fuels.