ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Findings of the ANS Executive Order Expert Advisory Group
On May 23, President Donald Trump signed four Executive Orders (EOs) designed to “usher in a nuclear energy renaissance” by building on federal policies and programs and directing efficiencies in the licensing, siting, development, and deployment of advanced reactor technologies.
In order to evaluate the specific proposals contained in the EOs, a group of experts was convened from various sectors of the U.S. nuclear technology enterprise, under the auspices of the ANS External Affairs Committee, to compare the EOs against existing ANS board-approved Position Statements and to offer constructive input for subsequent implementation by the Trump administration.
The group’s findings and feedback, which were delivered by ANS CEO Craig Piercy to ANS President Lisa Marshall and the Board of Directors, are listed below, grouped by individual EO.
Charles W. Forsberg, Per F. Peterson, Paul S. Pickard
Nuclear Technology | Volume 144 | Number 3 | December 2003 | Pages 289-302
Technical Paper | Fission Reactors | doi.org/10.13182/NT03-1
Articles are hosted by Taylor and Francis Online.
The molten-salt-cooled Advanced High-Temperature Reactor (AHTR) is a new reactor concept designed to provide very high-temperature (750 to 1000°C) heat to enable efficient low-cost thermochemical production of hydrogen (H2) or production of electricity. This paper provides an initial description and technical analysis of its key features. The proposed AHTR uses coated-particle graphite-matrix fuel similar to that used in high-temperature gas-cooled reactors (HTGRs), such as the General Atomics gas turbine-modular helium reactor. However, unlike the HTGRs, the AHTR uses a molten-salt coolant and a pool configuration, similar to that of the General Electric Super Power Reactor Inherently Safe Module (S-PRISM) liquid-metal reactor. Because the boiling points for molten fluoride salts are near ~1400°C, the reactor can operate at very high temperatures and atmospheric pressure. For thermochemical H2 production, the heat is delivered at the required near-constant high temperature and low pressure. For electricity production, a multireheat helium Brayton (gas-turbine) cycle, with efficiencies >50%, is used. The low-pressure molten-salt coolant, with its high heat capacity and natural circulation heat transfer capability, creates the potential for robust safety (including fully passive decay-heat removal) and improved economics with passive safety systems that allow higher power densities and scaling to large reactor sizes [>1000 MW(electric)].