ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Fluor to serve as EPC contractor for Centrus’s Piketon plant expansion
The HALEU cascade at the American Centrifuge Plant in Piketon, Ohio. (Photo: Centrus Energy)
American Centrifuge Operating, a subsidiary of Centrus Energy Corp., has formed a multiyear strategic collaboration with Fluor Corporation in which Fluor will serve as the engineering, procurement, and construction (EPC) contractor for Centrus’s expansion of its uranium enrichment facility in Piketon, Ohio. Fluor will lead the engineering and design aspects of the American Centrifuge Plant’s expansion, manage the supply chain and procurement of key materials and services, oversee construction at the site, and support the commissioning of new capacity.
Per F. Peterson
Nuclear Technology | Volume 144 | Number 3 | December 2003 | Pages 279-288
Technical Paper | Fission Reactors | doi.org/10.13182/NT144-279
Articles are hosted by Taylor and Francis Online.
Gas-turbine power conversion systems can have lower capital costs than comparable steam-turbine systems due to their higher power density. The recent commercialization of magnetic bearing systems for large turbomachinery now makes direct recuperated Brayton cycles the preferred power conversion choice for gas-cooled reactors. This paper presents a multiple-reheat closed gas cycle optimized to use energy input from liquid-metal or molten-salt coolants with temperatures as low as 550 to 650°C. By utilizing reheat, these molten coolant gas cycles (MCGCs) have the potential for substantially higher thermal efficiency than current gas-cooled reactors if used with comparable turbine inlet temperatures. The MCGC system also eliminates the need for steam generators, which removes the potential for chemical reactions between the molten coolant and steam, and greatly simplifies the control of tritium for fusion energy systems.