ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
NRC v. Texas: Supreme Court weighs challenge to NRC authority in spent fuel storage case
The State of Texas has not one but two ongoing federal court challenges to the Nuclear Regulatory Commission that could, if successful, turn decades of NRC regulations, precedent, and case law on its head.
Dong H. Nguyen
Nuclear Technology | Volume 91 | Number 1 | July 1990 | Pages 61-74
Technical Paper | Safety of Next Generation Power Reactor / Fission Reactor | doi.org/10.13182/NT90-A34441
Articles are hosted by Taylor and Francis Online.
The design of the next generation of power reactors will emphasize passive safety and enhanced engineered systems. True passivity can be achieved by capitalizing on natural laws to restore reactor stability during an off-normal event. The most effective stabilizing mechanisms relying solely on natural laws— without human interference—are the feedback reactivities produced by a change in the reactor thermal state. During 1986 and 1987, an important research program was undertaken at the Fast Flux Test Facility (FFTF) to advance the understanding of feedback mechanisms and to investigate passive safety in liquid-metal reactors. The experimental program began with a series of static feedback reactivity measurements aimed at separating feedback components and ended with a demonstration of passive safety in a series of loss-of-flow-without-scram (LOFWOS) to natural circulation tests. Described here are (a) the fundamental experimental concepts used to unfold various feedback components, (b) the analysis of integral data used to construct feedback reactivity models, (c) the comparison of FFTF reactivities with mechanistic feedback models in the SASSYS/SAS4A code system, and (d) the pretest calculations for the LOFWOS test series, using the new FFTF feedback models.