ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
Daniel E. Carroll, Kenneth D. Bergeron, Werner Scholtyssek, Greg D. Valdez, Richard Gido+
Nuclear Technology | Volume 91 | Number 2 | August 1990 | Pages 259-267
Technical Paper | Safety of Next Generation Power Reactor / Technique | doi.org/10.13182/NT90-A34433
Articles are hosted by Taylor and Francis Online.
The CONTAIN code is the U.S. Nuclear Regulatory Commission ’s best-estimate code for the evaluation of the conditions that may exist inside a reactor containment building during a severe accident. Included in the phenomena modeled are thermal hydraulics, radiant and convective heat transfer, aerosol loading and transient response, fission product transport and heating effects, and interactions of coolant and corium with the containment atmosphere and structures. An enhanced version of the code, designated CONTAIN LMR, has been used by groups in Japan and the Federal Republic of Germany to assess the ability of CONTAIN to analyze accident consequences for liquidmetal reactor (LMR) plants. Collaborative efforts to improve the modeling capabilities of CONTAIN for LMR applications have also been pursued. A brief description of physical models is presented, followed by a short review of validation exercises performed with CONTAIN. Finally, some demonstration calculations of an integrated LMR application are presented.