ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
Jeff Place on INPO’s strategy for industry growth
As executive vice president for industry strategy at the Institute of Nuclear Power Operations, Jeff Place leads INPO’s industry-facing work, engaging directly with chief nuclear officers.
Karl Verfondern, Werner Schenk, Heinz Nabielek
Nuclear Technology | Volume 91 | Number 2 | August 1990 | Pages 235-246
Technical Paper | Safety of Next Generation Power Reactor / Fuel Cycle | doi.org/10.13182/NT90-A34431
Articles are hosted by Taylor and Francis Online.
The high fission product retention potential of coated particle fuel combined with inherently passive temperature controls guarantee almost complete fission product retention during an accident in a small modular high-temperature reactor. Extensive experimental results provide the basis for this claim to inherent safety. Models and codes have been developed to (a) predict realistic, or at least conservative, overall release rates from the primary circuit, (b) reduce the large number of experimental results to a small set of characteristic coefficients, and (c) predict release beyond experimental conditions. Conservative predictions of release from the core have been done using a traditional pressure vessel model for release from fuel particles and simplified diffusion models for fission product transport. This approach is based on experimental work that has been done on nearly all possible accident conditions and is limited by the finite number of experiments. Data reduction has been achieved with two different modeling approaches combined into a new model that is equally relevant to all volatile fission products. The safety design of the 200-MW(thermal) HTR-Modul is based on Kernforschungsanlage Jülich experimental results from fuel accident condition performance testing and the modeling effort has been applied to a safety review.