ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
Sellafield awards $3.86B in infrastructure contracts to three companies
Sellafield Ltd., the site license company overseeing the decommissioning of the U.K.’s Sellafield nuclear site in Cumbria, England, announced the award of £2.9 billion (about $3.86 billion) in infrastructure support contracts to the companies of Morgan Sindall Infrastructure, Costain, and HOCHTIEF (UK) Construction.
Karl Verfondern, Werner Schenk, Heinz Nabielek
Nuclear Technology | Volume 91 | Number 2 | August 1990 | Pages 235-246
Technical Paper | Safety of Next Generation Power Reactor / Fuel Cycle | doi.org/10.13182/NT90-A34431
Articles are hosted by Taylor and Francis Online.
The high fission product retention potential of coated particle fuel combined with inherently passive temperature controls guarantee almost complete fission product retention during an accident in a small modular high-temperature reactor. Extensive experimental results provide the basis for this claim to inherent safety. Models and codes have been developed to (a) predict realistic, or at least conservative, overall release rates from the primary circuit, (b) reduce the large number of experimental results to a small set of characteristic coefficients, and (c) predict release beyond experimental conditions. Conservative predictions of release from the core have been done using a traditional pressure vessel model for release from fuel particles and simplified diffusion models for fission product transport. This approach is based on experimental work that has been done on nearly all possible accident conditions and is limited by the finite number of experiments. Data reduction has been achieved with two different modeling approaches combined into a new model that is equally relevant to all volatile fission products. The safety design of the 200-MW(thermal) HTR-Modul is based on Kernforschungsanlage Jülich experimental results from fuel accident condition performance testing and the modeling effort has been applied to a safety review.