ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE issues new NEPA rule and procedures—and accelerates DOME reactor testing
Meeting a deadline set in President Trump’s May 23 executive order “Reforming Nuclear Reactor Testing at the Department of Energy,” the DOE on June 30 updated information on its National Environmental Policy Act (NEPA) rulemaking and implementation procedures and published on its website an interim final rule that rescinds existing regulations alongside new implementing procedures.
S. Sunder
Nuclear Technology | Volume 144 | Number 2 | November 2003 | Pages 259-273
Technical Paper | Materials for Nuclear Systems | doi.org/10.13182/NT03-A3443
Articles are hosted by Taylor and Francis Online.
The relationship between molybdenum oxidation state and iodine volatility in nuclear fuel was investigated using high-temperature Knudsen cell-mass spectroscopy. It was observed that the ratio of the intensities of molecular iodine ions I2+ and CsI+ in the Knudsen cell-mass spectroscopic experiments can be used to investigate the iodine volatility in fuel under different conditions. The experiments show that the iodine volatility is similar in systems consisting of CsI alone, CsI/UO2, and CsI/UO2/MoOx (with molybdenum in oxidation states 0, 2, and 4). The iodine volatility is much higher, however, in CsI/UO2/MoO3 systems (with molybdenum in oxidation state = 6). The iodine volatility in the fuel increases significantly if oxidation of the molybdenum goes to the MoO3 stage. The increase in the iodine volatility is caused by the formation of elemental iodine from cesium iodide. It is concluded from these measurements that the oxidation of the fuel to the UO2.2 will substantially increase the volatilization of fission product iodine. An analysis of the literature data suggests that the enhanced iodine volatilization process may be initiated when the fuel is oxidized to UO2.02.