ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
S. Sunder
Nuclear Technology | Volume 144 | Number 2 | November 2003 | Pages 259-273
Technical Paper | Materials for Nuclear Systems | doi.org/10.13182/NT03-A3443
Articles are hosted by Taylor and Francis Online.
The relationship between molybdenum oxidation state and iodine volatility in nuclear fuel was investigated using high-temperature Knudsen cell-mass spectroscopy. It was observed that the ratio of the intensities of molecular iodine ions I2+ and CsI+ in the Knudsen cell-mass spectroscopic experiments can be used to investigate the iodine volatility in fuel under different conditions. The experiments show that the iodine volatility is similar in systems consisting of CsI alone, CsI/UO2, and CsI/UO2/MoOx (with molybdenum in oxidation states 0, 2, and 4). The iodine volatility is much higher, however, in CsI/UO2/MoO3 systems (with molybdenum in oxidation state = 6). The iodine volatility in the fuel increases significantly if oxidation of the molybdenum goes to the MoO3 stage. The increase in the iodine volatility is caused by the formation of elemental iodine from cesium iodide. It is concluded from these measurements that the oxidation of the fuel to the UO2.2 will substantially increase the volatilization of fission product iodine. An analysis of the literature data suggests that the enhanced iodine volatilization process may be initiated when the fuel is oxidized to UO2.02.