ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
A wave of new U.S.-U.K. deals ahead of Trump’s state visit
President Trump will arrive in the United Kingdom this week for a state visit that promises to include the usual pomp and ceremony alongside the signing of a landmark new agreement on U.S.-U.K. nuclear collaboration.
Charles J. Mueller, David C. Wade
Nuclear Technology | Volume 91 | Number 2 | August 1990 | Pages 215-225
Technical Paper | Safety of Next Generation Power Reactor / Nuclear Saftey | doi.org/10.13182/NT90-A34429
Articles are hosted by Taylor and Francis Online.
The approach and methods used at Argonne National Laboratory to assess core damage probability in risk assessments for innovative liquid-metal reactor (LMR) designs using metal-fueled cores in pool configurations are outlined. Bounding estimates for the predicted frequency of core damage from all unprotected initiating events are developed by establishing a set of reference scenarios from traditional anticipated transient without scram events. Sources of uncertainty are described and categorized. A probabilistic treatment is used to propagate the various uncertainties through safety analyses to determine their effects on limiting reactor parameters. For example, probability distributions for safety margins to selected core temperatures are propagated from sensitivity studies and estimates of the underlying uncertainties in reactivity feedback coefficients. Considerable self-cancellation of many of the contributors to core response uncertainties is demonstrated analytically. Upper bound probabilities of core damage are then calculated for the LMR cores currently being designed. The results show that these designs have much lower probabilities of suffering core damage than are predicted in published risk assessments for commercial power reactors. Finally, design strategies that can be used to reduce these already low probabilities to almost arbitrarily low values are discussed.