ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Mirion announces appointments
Mirion Technologies has announced three senior leadership appointments designed to support its global nuclear and medical businesses while advancing a company-wide digital and AI strategy. The leadership changes come as Mirion seeks to advance innovation and maintain strong performance in nuclear energy, radiation safety, and medical applications.
Gregory J. Van Tuyle, Peter Kroeger, Gregory C. Slovik, Bing C. Chan, Robert J. Kennett, Arnold L. Aronson
Nuclear Technology | Volume 91 | Number 2 | August 1990 | Pages 185-202
Technical Paper | Safety of Next Generation Power Reactor / Nuclear Saftey | doi.org/10.13182/NT90-A34427
Articles are hosted by Taylor and Francis Online.
Three advanced design concepts, including two liquid-metal-cooled reactors (LMRs), the Power Reactor Inherently Safe Module (PRISM) and the Sodium Advanced Fast Reactor (SAFR), and a high-temperature gas-cooled reactor (HTGR) are discussed and compared. Each provides inherent or passive safety to improve system safety. The focus is on two primary objectives: reactor shutdown and shutdown heat removal. The LMR and HTGR concepts rely on inherent reactivity feedback to provide an inherent reactor response under a failure-to-scram condition; SAFR also provides a passive shutdown system using Curie point magnets (the self-actuated scram system). For shutdown heat removal, the LMR and HTGR designs rely on passive air cooling of the reactor vessel as the ultimate safety-grade system.