ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Chris Wagner: The role of Eden Radioisotopes in the future of nuclear medicine
Chris Wagner has more than 40 years of experience in nuclear medicine, beginning as a clinical practitioner before moving into leadership roles at companies like Mallinckrodt (now Curium) and Nordion. His knowledge of both the clinical and the manufacturing sides of nuclear medicine laid the groundwork for helping to found Eden Radioisotopes, a start-up venture that intends to make diagnostic and therapeutic raw material medical isotopes like molybdenum-99 and lutetium-177.
Norihiro Doda, Yasushi Okano, Hisashi Ninokata
Nuclear Technology | Volume 144 | Number 2 | November 2003 | Pages 175-185
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT03-A3438
Articles are hosted by Taylor and Francis Online.
A numerical simulation thermal-hydraulics code called SPOOL based on computational fluid dynamics considering sodium reaction and aerosol transport is developed. Sodium pool fires are simulated using the SPOOL code, and periodic oscillation of the flame is observed with frequency similar to that observed for small-scale pool fire experiments with industrial fuels. The calculated mass-burning rate differs slightly from experimental results, yet it increases with pool temperature in agreement with experimental trends. The mass flux of aerosol driven by thermophoresis is calculated to be about 100 times larger than that by gravity, and the aerosols become concentrated at the edge of the pool. The release fraction, obtained by dividing the total mass of aerosol released into the atmosphere by that produced, increases with pool temperature in qualitative agreement with experiments.