ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Vistra’s Perry nuclear plant approved for license renewal
Texas-based Vistra Corporation has announced that its license renewal application for the Perry nuclear power plant was approved by the Nuclear Regulatory Commission. The plant first connected to the grid in 1986 and is still operating under its original 40-year license, which was set to expire next year.
Keith B. Harvey, Carol A. B. Larocque
Nuclear Technology | Volume 89 | Number 3 | March 1990 | Pages 358-364
Technical Paper | Radioactive Waste Management | doi.org/10.13182/NT90-A34373
Articles are hosted by Taylor and Francis Online.
Waste form glasses that contain substantial quantities of iron, manganese, and aluminum oxides, such as the Savannah River SRL TDS-131 glass, form a thick, hydrated surface layer when placed in contact with water. The dissolution of such a glass has been modeled by Wallace and Wicks, with their “Savannah River Model.” We showed previously that the equations of the Savannah River Model could be fitted to published experimental data if a time-dependent diffusion coefficient was assumed for species diffusing through the surface layer. The Savannah River Model assumes that all of the material dissolved from the glass enters solution, whereas it was observed that substantial quantities of material were retained in the surface layer. An alternative model, presented here, contains a mass balance equation that allows material either to enter solution or to be retained in the surface layer. It is shown that the equations derived using this model can be fitted to the published experimental data assuming a constant diffusion coefficient for species diffusing through the surface layer.