ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Industry Update—May 2025
Here is a recap of industry happenings from the recent past:
TerraPower’s Natrium reactor advances on several fronts
TerraPower has continued making aggressive progress in several areas for its under-construction Natrium Reactor Demonstration Project since the beginning of the year. Natrium is an advanced 345-MWe reactor that has liquid sodium as a coolant, improved fuel utilization, enhanced safety features, and an integrated energy storage system, allowing for a brief power output boost to 500-MWe if needed for grid resiliency. The company broke ground for its first Natrium plant in 2024 near a retiring coal plant in Kemmerer, Wyo.
Eric V. Brown, Leonard W. Gray, D. William Tedder
Nuclear Technology | Volume 89 | Number 3 | March 1990 | Pages 328-340
Technical Paper | Chemical Processing | doi.org/10.13182/NT90-A34370
Articles are hosted by Taylor and Francis Online.
A computer model of an air-lift dissolver was developed to predict the dissolution rates for plutonium oxide (PuO2), dysprosium oxide (Dy2O3), and incinerator ash. This model combines surface kinetics with mass transfer effects to obtain overall rate expressions. The mass transfer coefficients are related to several major process variables. These predictions were compared with experimental tests at Savannah River Laboratory using simulated ash and Dy2O3 as a surrogate for refractory PuO2. The present version of the model overestimates the residual fluoride concentrations in dissolver effluents by ∼50% for several reasons, which are discussed. The minimum air sparge rates to achieve liquid circulation in the dissolver are predicted quite well, within ± 6%. The nonvolatile dissolved solids are estimated to within ±5 to 20%. Dysprosium dissolution is predicted to within ±10%. Dysprosium oxide is a poor surrogate for refractory PuO2.