ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Supreme Court rules against Texas in interim storage case
The Supreme Court voted 6–3 against Texas and a group of landowners today in a case involving the Nuclear Regulatory Commission’s licensing of a consolidated interim storage facility for spent nuclear fuel, reversing a decision by the 5th Circuit Court of Appeals to grant the state and landowners Fasken Land and Minerals (Fasken) standing to challenge the license.
John F. Geldard, Adolph L. Beyerlein
Nuclear Technology | Volume 89 | Number 3 | March 1990 | Pages 318-327
Technical Paper | Chemical Processing | doi.org/10.13182/NT90-A34369
Articles are hosted by Taylor and Francis Online.
The mathematical basis for two new computer codes, PULSER and PULMAT, is described. The PULSER code simulates the temporal and steady-state concentration profiles in pulsed column contactors using the Purex process. The CPU times needed for these calculations are at least 50 times less than those using the previously described CUSEP code. This is obtained by recognizing that effects due to pulsing occur on a much faster time scale than those due to steady flow and they can be approximated as occurring instantaneously. Separation of the time scales allows the formulation of simple flow equations for pulsed column contactors. In addition, a matrix method can be devised that makes possible direct calculation of the steady-state concentration profiles, resulting in very short CPU times. The code that performs these calculations is called PULMAT. Both codes have been used to generate concentration profiles in several extraction (A-type) and stripping (E-type) contactors and in a partitioning (B-type) contactor. These results are compared with results obtained using the CUSEP computer code and with other results where available.