ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
John F. Geldard, Adolph L. Beyerlein
Nuclear Technology | Volume 89 | Number 3 | March 1990 | Pages 318-327
Technical Paper | Chemical Processing | doi.org/10.13182/NT90-A34369
Articles are hosted by Taylor and Francis Online.
The mathematical basis for two new computer codes, PULSER and PULMAT, is described. The PULSER code simulates the temporal and steady-state concentration profiles in pulsed column contactors using the Purex process. The CPU times needed for these calculations are at least 50 times less than those using the previously described CUSEP code. This is obtained by recognizing that effects due to pulsing occur on a much faster time scale than those due to steady flow and they can be approximated as occurring instantaneously. Separation of the time scales allows the formulation of simple flow equations for pulsed column contactors. In addition, a matrix method can be devised that makes possible direct calculation of the steady-state concentration profiles, resulting in very short CPU times. The code that performs these calculations is called PULMAT. Both codes have been used to generate concentration profiles in several extraction (A-type) and stripping (E-type) contactors and in a partitioning (B-type) contactor. These results are compared with results obtained using the CUSEP computer code and with other results where available.