ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
Robert J. Neuhold, John F. Marchaterre, Alan E. Waltar
Nuclear Technology | Volume 89 | Number 1 | January 1990 | Pages 83-91
Technical Paper | Nuclear Safety | doi.org/10.13182/NT90-A34360
Articles are hosted by Taylor and Francis Online.
A new approach to achieving fast reactor safety goals is becoming apparent in the U.S. Fast Reactor Program. Whereas the “defense-in-depth” philosophy still prevails, there has been a tangible shift toward emphasizing passive mechanisms to protect the reactor and provide public safety rather than relying on addon active, engineered safety systems. Intrinsic reactivity feedback mechanisms, based on fundamental nuclear cross section and material motion changes with temperatures, combined with passive methods to assure removal of decay heat, are being quantified and included in analysis techniques to demonstrate the exceptional robustness of current advanced liquid-metal-cooled reactor designs in the United States.