ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Mirion announces appointments
Mirion Technologies has announced three senior leadership appointments designed to support its global nuclear and medical businesses while advancing a company-wide digital and AI strategy. The leadership changes come as Mirion seeks to advance innovation and maintain strong performance in nuclear energy, radiation safety, and medical applications.
Bradley J. Knutson, Richard A. Harris
Nuclear Technology | Volume 89 | Number 1 | January 1990 | Pages 9-17
Technical Paper | Fission Reactor | doi.org/10.13182/NT90-A34355
Articles are hosted by Taylor and Francis Online.
Experience using an automated core reactivity monitoring technique at the Fast Flux Test Facility (FFTF) through eight operating cycles is described. This technique relies on comparing predicted-to-measured rod positions to detect any anomalous (or unpredicted) core reactivity changes. Reactivity worth predictions of core state changes (e.g., temperature and irradiation changes) and compensating control rod movements are required for the rod position comparison. A substantial data base now exists to evaluate changes in temperature feedback reactivity effects operational in the FFTF, rod worth changes due to core loading, temperature and irradiation effects, and burnup effects associated with transmutation of fuel materials. This preliminary work focuses on resolving observed reactivity anomalies by evaluating the prediction models using additional zero-power rod worth measurement data along with calculations of rod worths and burnup rates for each cycle using cross-section data processed from the latest ENDF/B-V data set.