ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Supreme Court rules against Texas in interim storage case
The Supreme Court voted 6–3 against Texas and a group of landowners today in a case involving the Nuclear Regulatory Commission’s licensing of a consolidated interim storage facility for spent nuclear fuel, reversing a decision by the 5th Circuit Court of Appeals to grant the state and landowners Fasken Land and Minerals (Fasken) standing to challenge the license.
Bradley J. Knutson, Richard A. Harris
Nuclear Technology | Volume 89 | Number 1 | January 1990 | Pages 9-17
Technical Paper | Fission Reactor | doi.org/10.13182/NT90-A34355
Articles are hosted by Taylor and Francis Online.
Experience using an automated core reactivity monitoring technique at the Fast Flux Test Facility (FFTF) through eight operating cycles is described. This technique relies on comparing predicted-to-measured rod positions to detect any anomalous (or unpredicted) core reactivity changes. Reactivity worth predictions of core state changes (e.g., temperature and irradiation changes) and compensating control rod movements are required for the rod position comparison. A substantial data base now exists to evaluate changes in temperature feedback reactivity effects operational in the FFTF, rod worth changes due to core loading, temperature and irradiation effects, and burnup effects associated with transmutation of fuel materials. This preliminary work focuses on resolving observed reactivity anomalies by evaluating the prediction models using additional zero-power rod worth measurement data along with calculations of rod worths and burnup rates for each cycle using cross-section data processed from the latest ENDF/B-V data set.