ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE issues new NEPA rule and procedures—and accelerates DOME reactor testing
Meeting a deadline set in President Trump’s May 23 executive order “Reforming Nuclear Reactor Testing at the Department of Energy,” the DOE on June 30 updated information on its National Environmental Policy Act (NEPA) rulemaking and implementation procedures and published on its website an interim final rule that rescinds existing regulations alongside new implementing procedures.
Luciano Burgazzi
Nuclear Technology | Volume 144 | Number 2 | November 2003 | Pages 145-151
Technical Paper | Reactor Safety | doi.org/10.13182/NT144-145
Articles are hosted by Taylor and Francis Online.
A methodology, to quantify the reliability of passive safety systems, proposed for use in advanced reactor design, is developed. Passive systems are identified as systems that do not need any external input or energy to operate and rely only upon natural physical laws (e.g., gravity, natural circulation, heat conduction, internally stored energy, etc.) and/or intelligent use of the energy inherently available in the system (e.g., chemical reaction, decay heat, etc.). The reliability of a passive system refers to the ability of the system to carry out the required function under the prevailing condition when required: The passive system may fail its mission, in addition to the classical mechanical failure of its components, for deviation from the expected behavior, due to physical phenomena or to different boundary and initial conditions. The present research activity is finalized at the reliability estimation of passive B systems (i.e., implementing moving working fluids, see IAEA); the selected system is a loop operating in natural circulation including a heat source and a heat sink.The functional reliability concept, defined as the probability to perform the required mission, is introduced, and the R-S (Resistance-Stress) model taken from fracture mechanics is adopted. R and S are coined as expressions of functional Requirement and system State. Water mass flow circulating through the system is accounted as a parameter defining the passive system performance, and probability distribution functions (pdf's) are assigned to both R and S quantities; thus, the mission of the passive system defines which parameter values are considered a failure by comparing the corresponding pdfs according to a defined safety criteria. The methodology, its application, and results of the analysis are presented and discussed.