ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Ribbon-cutting scheduled for Advanced Manufacturing Collaborative
Energy Secretary Chris Wright will attend the opening of the Advanced Manufacturing Collaborative in Aiken, S.C., on August 7. Wright will deliver remarks and join Savannah River National Laboratory leadership and partners for a ribbon-cutting ceremony.
Hitoshi Uematsu, Sadayuki Izutsu, Toru Yamamoto, Ryutaro Yamashita, Sakae Muto, Akio Toba
Nuclear Technology | Volume 88 | Number 1 | October 1989 | Pages 87-97
Technical Paper | Heat Transfer and Fluid Flow | doi.org/10.13182/NT89-A34339
Articles are hosted by Taylor and Francis Online.
A reactivity-initiated event is a design-basis accident for the safety analysis of boiling water reactors. It is defined as a rapid transient of reactor power caused by a reactivity insertion of over $1.0 due to a postulated drop or abnormal withdrawal of the control rod from the core. Strong space-dependent feedback effects are associated with the local power increase due to control rod movement. A realistic treatment of the core status in a transient by a code with a detailed core model is recommended in evaluating this event. A three-dimensional transient code, ARIES, has been developed to meet this need. The code simulates the event with three-dimensional neutronics, coupled with multichannel thermal hydraulics, based on a nonequilibrium separated flow model. The models and verification of the code with a benchmark problem posed by the Nuclear Energy Agency Committee on Research Physics/Committee on the Safety of Nuclear Installations and by comparisons to the experimental data of tests with the SPERT III E-core are presented.