ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
Helmut Hoffmann, Dietrich Weinberg, Yoshiaki Ieda, Klaus Marten, Herbert Tschöke, Hans-Heinz Frey, Kurt Dres
Nuclear Technology | Volume 88 | Number 1 | October 1989 | Pages 75-86
Technical Paper | Heat Transfer and Fluid Flow | doi.org/10.13182/NT89-A34338
Articles are hosted by Taylor and Francis Online.
To examine the function of the safety-related SNR-2 decay heat removal concept, natural convection experiments were performed in two- and three-dimensional water models, scaled 1:20, under conditions of symmetric and nonsymmetric loads of the immersed coolers installed in the upper plenum at 180-deg positions with respect to each other. The temperature and velocity distributions were measured and the flow patterns recorded for different configurations of the instrumented plug. For symmetric load conditions, symmetric temperature and flow distributions were measured in two- and three-dimensional models. Nonsymmetric load conditions produce remarkable temperature differences between the two separated plenums of the two-dimensional model if fluid circulation is suppressed by a closed plug. An open plug allows fluid to pass through and shows lower temperature differences. In contrast, in the three-dimensional experiment, azimuthal fluid flow inside the plenum prevails even with the plug closed, and identical temperature distributions are measured. The calculations using the COMMIX-1B code are generally in good agreement with the measurements.