ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Industry Update—May 2025
Here is a recap of industry happenings from the recent past:
TerraPower’s Natrium reactor advances on several fronts
TerraPower has continued making aggressive progress in several areas for its under-construction Natrium Reactor Demonstration Project since the beginning of the year. Natrium is an advanced 345-MWe reactor that has liquid sodium as a coolant, improved fuel utilization, enhanced safety features, and an integrated energy storage system, allowing for a brief power output boost to 500-MWe if needed for grid resiliency. The company broke ground for its first Natrium plant in 2024 near a retiring coal plant in Kemmerer, Wyo.
Helmut Hoffmann, Dietrich Weinberg, Yoshiaki Ieda, Klaus Marten, Herbert Tschöke, Hans-Heinz Frey, Kurt Dres
Nuclear Technology | Volume 88 | Number 1 | October 1989 | Pages 75-86
Technical Paper | Heat Transfer and Fluid Flow | doi.org/10.13182/NT89-A34338
Articles are hosted by Taylor and Francis Online.
To examine the function of the safety-related SNR-2 decay heat removal concept, natural convection experiments were performed in two- and three-dimensional water models, scaled 1:20, under conditions of symmetric and nonsymmetric loads of the immersed coolers installed in the upper plenum at 180-deg positions with respect to each other. The temperature and velocity distributions were measured and the flow patterns recorded for different configurations of the instrumented plug. For symmetric load conditions, symmetric temperature and flow distributions were measured in two- and three-dimensional models. Nonsymmetric load conditions produce remarkable temperature differences between the two separated plenums of the two-dimensional model if fluid circulation is suppressed by a closed plug. An open plug allows fluid to pass through and shows lower temperature differences. In contrast, in the three-dimensional experiment, azimuthal fluid flow inside the plenum prevails even with the plug closed, and identical temperature distributions are measured. The calculations using the COMMIX-1B code are generally in good agreement with the measurements.