ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Quad Cities violations lead to NRC confirmatory order
The Nuclear Regulatory Commission has sent a confirmatory order to Constellation Energy Generation outlining the agreed-on actions to address apparent violations of agency requirements at Quad Cities nuclear power plant in Cordova, Ill. The corrective and preventive actions are based on a June neutral party–mediated alternative dispute resolution (ADR) session that had been requested by Constellation to help it and agency decide on steps forward.
Sudip S. Dosanjh
Nuclear Technology | Volume 88 | Number 1 | October 1989 | Pages 30-46
Technical Paper | Nuclear Safety | doi.org/10.13182/NT89-A34334
Articles are hosted by Taylor and Francis Online.
During severe light water reactor accidents like Three Mile Island Unit 2, the fuel rods can fragment and thus convert the reactor core into a large particle bed. The postdryout meltdown of such debris beds is examined. A two-dimensional model that considers the presence of oxidic (UO2 and ZrO2) as well as metallic (e.g., zirconium) constituents is developed. Key results are that (a) a dense metallic crust is created near the bottom of the bed as molten materials flow downward and freeze; (b) liquid accumulates above the blockage and if zirconium is present, the pool grows rapidly as molten zirconium dissolves both UO2 and ZrO2 particles; (c) if the melt wets the solid, a fraction of the melt flows radially outward under the action of capillary forces and freezes near the radial boundary; (d) in a non wetting system, all of the melt flows into the bottom of the bed; and (e) when zirconium and iron are in intimate contact and the zirconium metal atomic fraction is >0.33, these metals can liquefy and flow out of the bed very early in the meltdown sequence.