ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Mirion announces appointments
Mirion Technologies has announced three senior leadership appointments designed to support its global nuclear and medical businesses while advancing a company-wide digital and AI strategy. The leadership changes come as Mirion seeks to advance innovation and maintain strong performance in nuclear energy, radiation safety, and medical applications.
Sudip S. Dosanjh
Nuclear Technology | Volume 88 | Number 1 | October 1989 | Pages 30-46
Technical Paper | Nuclear Safety | doi.org/10.13182/NT89-A34334
Articles are hosted by Taylor and Francis Online.
During severe light water reactor accidents like Three Mile Island Unit 2, the fuel rods can fragment and thus convert the reactor core into a large particle bed. The postdryout meltdown of such debris beds is examined. A two-dimensional model that considers the presence of oxidic (UO2 and ZrO2) as well as metallic (e.g., zirconium) constituents is developed. Key results are that (a) a dense metallic crust is created near the bottom of the bed as molten materials flow downward and freeze; (b) liquid accumulates above the blockage and if zirconium is present, the pool grows rapidly as molten zirconium dissolves both UO2 and ZrO2 particles; (c) if the melt wets the solid, a fraction of the melt flows radially outward under the action of capillary forces and freezes near the radial boundary; (d) in a non wetting system, all of the melt flows into the bottom of the bed; and (e) when zirconium and iron are in intimate contact and the zirconium metal atomic fraction is >0.33, these metals can liquefy and flow out of the bed very early in the meltdown sequence.