ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
Wen-Shan Lin, Chien-Hsiung Lee, Bau-Shei Pei
Nuclear Technology | Volume 88 | Number 3 | December 1989 | Pages 294-306
Technical Paper | Heat Transfer and Fluid Flow | doi.org/10.13182/NT89-A34312
Articles are hosted by Taylor and Francis Online.
Based on the Helmholtz instability at the microlayer/vapor interface as a trigger condition for microlayer dryout, Lee and Mudawwar developed a mechanistic critical heat flux (CHF) model for subcooled flow boiling. An improved CHF model is implemented with more solid theoretical bases for subcooled and low-quality flow boiling under pressurized water reactor conditions. Comparisons between the predictions and experimental data show that the present model is more accurate than the well-known theoretical CHF model of Weisman and Pei and the empirical CHF correlations of W-3, Bowring, and Katto and Ohno for water flowing through uniformly heated round tubes within the applicable ranges. The applicability of the present model to rod bundles is also under investigation. Highly satisfactory results are obtained from the comparisons of predicted to observed bundle critical power.