ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
T. J. Liaw, Chin Pan, Gen-Shun Chen, Jung-Kue Hsiue
Nuclear Technology | Volume 88 | Number 3 | December 1989 | Pages 227-238
Technical Paper | Nuclear Safety | doi.org/10.13182/NT89-A34306
Articles are hosted by Taylor and Francis Online.
Anticipated transient without scram (ATWS) could be a major accident sequence with possible core melt and containment damage in a boiling water reactor (BWR). The behavior of a BWR/6 during a main steam isolation valve closure ATWS is investigated using the best-estimate computer program, RETRAN-02. The effects of both makeup coolant and boron injection on the reactor behavior are studied. It is found that the BWR/6 behaves similarly to the BWR/2 and BWR/4. Without boron injection and makeup coolant, the reactor loses its coolant inventory very quickly and the reactor power drops rapidly to ∼16% of rated power due to negative void reactivity. With coolant makeup from the high-pressure core spray and the reactor core isolation cooling systems, the reactor reaches a quasisteady-state condition after an initially rapidly changing transient. The dome pressure, downcomer water level, and core power oscillate around a mean value; the average core power is ∼15%, which is approximately equal to the power needed to heat and evaporate the subcooled makeup coolant. Lower boron concentrations in the core tend to complicate reactor behavior due to the combination of two competing phenomena: the negative boron reactivity and the positive reactivity caused by a void collapse.