ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Industry Update—May 2025
Here is a recap of industry happenings from the recent past:
TerraPower’s Natrium reactor advances on several fronts
TerraPower has continued making aggressive progress in several areas for its under-construction Natrium Reactor Demonstration Project since the beginning of the year. Natrium is an advanced 345-MWe reactor that has liquid sodium as a coolant, improved fuel utilization, enhanced safety features, and an integrated energy storage system, allowing for a brief power output boost to 500-MWe if needed for grid resiliency. The company broke ground for its first Natrium plant in 2024 near a retiring coal plant in Kemmerer, Wyo.
Tunc Aldemir, Joseph W. Talnagi,*, Don W. Miller
Nuclear Technology | Volume 86 | Number 3 | September 1989 | Pages 248-263
Technical Paper | Fission Reactor | doi.org/10.13182/NT89-A34293
Articles are hosted by Taylor and Francis Online.
The 10-kW, highly enriched uranium (HEU) fueled Ohio State University Research Reactor (OSURR) is being upgraded to operate at 500 kW under natural convection core cooling with the recently licenced lowenriched uranium (LEU), high-density U3Si2fuel. The OSURR will be the first university reactor to use standardized U3Si2 plates for a full-core conversion from HEU to LEU fuel. The activities toward conversion/power upgrade objectives include (a) a neutronic performance assessment of 15 LEU cores with 16 plate standard and 10 plate control elements under expected operating conditions; (b) simulation of OSURR threedimensional pool dynamics under various pool configurations to limit the pool top 16N activity (PTNA) to operationally allowable levels; (c) determination of a new correlation to predict onset of nucleate boiling (ONB) in thin, rectangular channels under low-velocity, upward flow conditions; and (d) design of a pool heat removal system (PHRS). These activities have identified three possible LEU cores with a cold, clean shutdown margin in the range from 1.57 to 1.91% Δk/k that allow steady-state operation at 500 kW with a 50 to 60% margin to ONB. A system configuration that minimizes PTNA while maximizing the primary inlet temperature to PHRS to improve the heat exchanger efficiency has also been identified. The PHRS is designed to remove 500 kW through an ethylene-glycol heat exchanger and a dry cooler when the outside air temperature is <33°C. The PHRS also has an auxiliary heat exchanger to allow operation without power derating when the air temperature is >33°C.