ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Industry Update—May 2025
Here is a recap of industry happenings from the recent past:
TerraPower’s Natrium reactor advances on several fronts
TerraPower has continued making aggressive progress in several areas for its under-construction Natrium Reactor Demonstration Project since the beginning of the year. Natrium is an advanced 345-MWe reactor that has liquid sodium as a coolant, improved fuel utilization, enhanced safety features, and an integrated energy storage system, allowing for a brief power output boost to 500-MWe if needed for grid resiliency. The company broke ground for its first Natrium plant in 2024 near a retiring coal plant in Kemmerer, Wyo.
Werner Faubel, Sameh A. Ali
Nuclear Technology | Volume 86 | Number 1 | July 1989 | Pages 60-65
Technical Paper | Radioactive Waste Management | doi.org/10.13182/NT89-A34282
Articles are hosted by Taylor and Francis Online.
The technical feasibility of partitioning concentrated nitric acid intermediate-level waste (ILWC) solutions from the Purex process into a small volume of high-level waste and a large volume of low-level waste using sorption methods is demonstrated for 1-ℓ batches. Cesium-134 and 137Cs are selectively separated with a decontamination factor (DF) greater than 1 × 105 in a newly developed “suspended-bed” column filled with the microporous inorganic exchanger ammonium molybdophosphate. The 125Sb and the actinides and lanthanides with a 3+ valence state are retained with DFs between 40 and 1000 on metal oxides of antimony and manganese and on an extraction column containing n-octyl(phenyl) N,N-diisobutyl carbamoyl methyl phosphine oxide, respectively. Ruthenium-106 and 60Co are removed in a column loaded with dimethyl glyoxime and have DFs greater than 20. The amount of secondary wastes arising from absorber materials is calculated to be 300 kg for a 350 t/yr reprocessing plant with an ILWC volume of ∼0.5 m3/t of heavy metal.