ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
Eberhard Schuster, Kurt A. Pflugrad
Nuclear Technology | Volume 86 | Number 2 | August 1989 | Pages 192-196
Technical Paper | Decontamination and Decommissioning / Radioactive Waste Management | doi.org/10.13182/NT89-A34270
Articles are hosted by Taylor and Francis Online.
Metal waste from nuclear power plants is normally contaminated with beta and gamma emitters mainly due to corrosion product radionuclides. Metal waste originating from reprocessing and fuel fabrication plants is contaminated only with alpha emitters (uranium). So far, only radionuclides that can be measured by gamma spectrometry can be quantified. The behavior of alpha emitters is investigated using an artificially added radionuclide in melt experiments. During its 1984–1988 program on decommissioning of nuclear installations, the Commission of the European Communities concluded a 2-yr research contract with Siemens AG, UB Kraftwerk Union on the behavior of radionuclides that are difficult to measure in the melting of steel. Investigation of the radionuclides 55Fe, 63Ni, and 90Sr began with melt experiments on 55Fe (considered an epsilon emitter) at laboratory scale, which showed that this nuclide is probably as homogeneously distributed in the melt as 60Co; thus, 60Co can be used as an isotopic indicator for 55Fe. In another melt experiment, 241Am was artificially added to metal waste and melted, showing a decontamination factor of ∼100 even with a very small quantity added (4 × 10−7 g 241Am). As of mid-1988, four melt experiments, each with different melt parameters, have been carried out. The last experiment relates to the melting of carbon steel with metallic uranium additions; although this experiment is not yet completely evaluated, problems related to the direct alpha measuring technique may arise from the disturbance of the radiochemical equilibrium of the uranium decay chain in the melt process.