ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
A wave of new U.S.-U.K. deals ahead of Trump’s state visit
President Trump will arrive in the United Kingdom this week for a state visit that promises to include the usual pomp and ceremony alongside the signing of a landmark new agreement on U.S.-U.K. nuclear collaboration.
L. C. Lewis, J. P. Henscheid
Nuclear Technology | Volume 85 | Number 3 | June 1989 | Pages 294-299
Technical Paper | Chemical Processing | doi.org/10.13182/NT89-A34251
Articles are hosted by Taylor and Francis Online.
The Remote Analytical Laboratory at the Idaho Chemical Processing Plant was designed to provide analytical chemistry support to the irradiated fuel processing and associated waste processing operations. The facility was put into radioactive operation on July 7, 1986, and operated for more than a year during the first fluorinel fuel dissolution process campaign. The facility incorporated a number of innovative features and was equipped with state-of-the-art analytical instrumentation. The success of the facility is a direct function of how well the remote analytical equipment performed. A wide range of high-technology methods, which were adapted for remote use, proved to be reliable and provided accurate measurements of chemical parameters. Sample turnaround times were of interest because in some instances the turnaround time was the process rate-limiting step. Several innovative features were built into the system to reduce turnaround time. These included remote log-in of samples, pneumatic sample delivery systems, specialized training, computerized sample result reporting, and improvements in the placement of equipment.