ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Laurent Cantrel, Elisabeth Krausmann
Nuclear Technology | Volume 144 | Number 1 | October 2003 | Pages 1-15
Technical Paper | Reactor Safety | doi.org/10.13182/NT03-A3425
Articles are hosted by Taylor and Francis Online.
Radioiodine entering the containment from the postaccident primary circuit in vapor or gaseous form, as observed in the Phebus FPT0 and FPT1 tests, has a direct impact on the source term evaluation. State-of-the-art fission-product transport codes based on the assumption of thermochemical equilibrium failed to predict this phenomenon. In this work the standard approach of assuming the instantaneous establishment of thermochemical equilibrium is questioned and it will be argued that kinetic limitations may have existed under the severe-accident boundary conditions of the FPT0 and FPT1 tests. To this end a simple monodimensional transport model was developed in an attempt at introducing kinetic aspects within the primary circuit. A number of homogeneous gas-phase reactions between selected fission products and structural materials, complemented by condensation reactions, underlies the kinetic model. In the absence of experimental data, the kinetic constants were estimated using the transition-state theory or semi-empirical methods. The kinetic model was then applied to the analysis of Phebus FPT0 and FPT1 yielding a satisfactory agreement between experimental data and model predictions.