ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
Kazunori Sasaki, Naotaka Terashita, Takamichi Ogino
Nuclear Technology | Volume 85 | Number 3 | June 1989 | Pages 259-273
Technical Paper | Fission Reactor | doi.org/10.13182/NT89-A34248
Articles are hosted by Taylor and Francis Online.
A pressurized water reactor plant analyzer code (NUPAC-1) has been developed to apply to an operator support system or an advanced training simulator. The simulation code must produce reasonably accurate results as well as run in a fast mode for realizing functions such as anomaly detection, estimation of unobservable plant internal states, and prediction of plant state trends. The NUPAC-1 code adopts fast computing methods, i.e., the table fitting method of the state variables, time-step control, and calculation control of heat transfer coefficients, in order to attain accuracy and fast-running capability. The NUPAC-1 results are compared with the RELAP5/MOD2 results to assess the accuracy for accident analyses such as loss of coolant, feedwater line break, and steam generator tube rupture. The fast computing methods had a negligibly small effect on accuracy and contributed to fast-running capability. The NUPAC-1 code can be applied to the operator support system and the advanced training simulator as a two-phase simulation code.