ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
U.K.’s NWS gets input from young people on geological disposal
Nuclear Waste Services, the radioactive waste management subsidiary of the United Kingdom’s Nuclear Decommissioning Authority, has reported on its inaugural year of the National Youth Forum on Geological Disposal forum. NWS set up the initiative, in partnership with the environmental consultancy firm ARUP and the not-for-profit organization The Young Foundation, to give young people the chance to share their views on the government’s plans to develop a geological disposal facility (GDF) for the safe, secure, and long-term disposal of radioactive waste.
Wen-Shan Lin, Bau-Shei Pei, Chien-Hsiung Lee, I. A. Mudawwar
Nuclear Technology | Volume 85 | Number 2 | May 1989 | Pages 213-226
Technical Paper | Heat Transfer and Fluid Flow | doi.org/10.13182/NT89-A34242
Articles are hosted by Taylor and Francis Online.
A theoretical critical heat flux (CHF) model based on microlayer dryout and Helmholtz instability for subcooled tube flow under pressurized water reactor operation conditions is first extended to the conditions of saturated low-quality flow. Then the applicability of this extended theoretical CHF model to rod bundles is evaluated. The effects of grid spacers, cold wall, and axial heat flux nonuniformity on bundle CHFs are investigated. The extended CHF model is very accurate when compared with three other well-known CHF correlations on a data base of round tube CHF. In the simple case with uniform axial heat flux distribution, simple grid spacers, and no guide tubes in bundles, the theoretical CHF model gives good results. In other more complex cases, the cold-wall effects due to the existence of guide tubes, the effects of mixing vane grids, and the effects of nonuniform axial heat flux distributions on CHF are significant. The present model generally gives satisfactory results when compared with ∼1400 bundle CHF experimental data points although corrections for grid spacers, cold wall, and axial heat flux have not yet been considered.