ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Christmas Light
’Twas the night before Christmas when all through the house
No electrons were flowing through even my mouse.
All devices were plugged by the chimney with care
With the hope that St. Nikola Tesla would share.
Wen-Shan Lin, Bau-Shei Pei, Chien-Hsiung Lee, I. A. Mudawwar
Nuclear Technology | Volume 85 | Number 2 | May 1989 | Pages 213-226
Technical Paper | Heat Transfer and Fluid Flow | doi.org/10.13182/NT89-A34242
Articles are hosted by Taylor and Francis Online.
A theoretical critical heat flux (CHF) model based on microlayer dryout and Helmholtz instability for subcooled tube flow under pressurized water reactor operation conditions is first extended to the conditions of saturated low-quality flow. Then the applicability of this extended theoretical CHF model to rod bundles is evaluated. The effects of grid spacers, cold wall, and axial heat flux nonuniformity on bundle CHFs are investigated. The extended CHF model is very accurate when compared with three other well-known CHF correlations on a data base of round tube CHF. In the simple case with uniform axial heat flux distribution, simple grid spacers, and no guide tubes in bundles, the theoretical CHF model gives good results. In other more complex cases, the cold-wall effects due to the existence of guide tubes, the effects of mixing vane grids, and the effects of nonuniform axial heat flux distributions on CHF are significant. The present model generally gives satisfactory results when compared with ∼1400 bundle CHF experimental data points although corrections for grid spacers, cold wall, and axial heat flux have not yet been considered.