ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Mirion announces appointments
Mirion Technologies has announced three senior leadership appointments designed to support its global nuclear and medical businesses while advancing a company-wide digital and AI strategy. The leadership changes come as Mirion seeks to advance innovation and maintain strong performance in nuclear energy, radiation safety, and medical applications.
T. Sampat Sridhar, Ahmad G. Solomah
Nuclear Technology | Volume 85 | Number 1 | April 1989 | Pages 89-97
Technical Paper | Radioactive Waste Management | doi.org/10.13182/NT89-A34230
Articles are hosted by Taylor and Francis Online.
A process has been developed to immobilize the uranium-rich high-level radioactive waste generated from the reprocessing of CANDU spent fuel using the amine process. The calcination technology developed in the Process Development Section at the Whiteshell Nuclear Research Establishment has been used to demonstrate this process. Simulated liquid waste and SYN-ROC additives were denitrated thermochemically in a continuous operation using the Whiteshell Roto-Spray Calciner. Technically dense (≥95% theoretical density) samples of SYNROC-FA crystalline ceramic waste form containing ∼50 wt% simulated amine process waste were prepared by pressureless sintering at 1250°C under reducing atmosphere (N2-5 vol% H2) conditions. X-ray diffraction and grain microanalyses using an electron probe microanalyzer and an energy dispersive X-ray analyzer revealed the existence of a pyrochlore-structured phase CaU(Ti3+, Ti4+)2O7, perovskite (Ca,U)(Ti3+,Ti4+)O3, barium-hollandite Ba1.14(Al3+, Ti3+)2.27Ti5.71O16, and uraninite (U,Ca,Ti)O2. Leach tests (modified MCC-1) carried out in a simulated Canadian shield groundwater at 90°C for 120 days revealed that barium was the only ion released into the leachants, with an initial leach rate of 2x 10-1 g · m-2. day-1 measured after a 3-day period. The leach rate dropped to 6 x 10-3 g.m-2.day-1 after 120 days of leaching. The concentrations of uranium and other simulated fission products in the leachants were below the detection limits of inductively coupled plasma spectrometry and atomic absorption techniques. The leach rates of uranium and titanium were estimated to be <6 x 10-5 and 3 x 10-5 g·m-2.day-1, respectively.