ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Industry Update—May 2025
Here is a recap of industry happenings from the recent past:
TerraPower’s Natrium reactor advances on several fronts
TerraPower has continued making aggressive progress in several areas for its under-construction Natrium Reactor Demonstration Project since the beginning of the year. Natrium is an advanced 345-MWe reactor that has liquid sodium as a coolant, improved fuel utilization, enhanced safety features, and an integrated energy storage system, allowing for a brief power output boost to 500-MWe if needed for grid resiliency. The company broke ground for its first Natrium plant in 2024 near a retiring coal plant in Kemmerer, Wyo.
T. Sampat Sridhar, Ahmad G. Solomah
Nuclear Technology | Volume 85 | Number 1 | April 1989 | Pages 89-97
Technical Paper | Radioactive Waste Management | doi.org/10.13182/NT89-A34230
Articles are hosted by Taylor and Francis Online.
A process has been developed to immobilize the uranium-rich high-level radioactive waste generated from the reprocessing of CANDU spent fuel using the amine process. The calcination technology developed in the Process Development Section at the Whiteshell Nuclear Research Establishment has been used to demonstrate this process. Simulated liquid waste and SYN-ROC additives were denitrated thermochemically in a continuous operation using the Whiteshell Roto-Spray Calciner. Technically dense (≥95% theoretical density) samples of SYNROC-FA crystalline ceramic waste form containing ∼50 wt% simulated amine process waste were prepared by pressureless sintering at 1250°C under reducing atmosphere (N2-5 vol% H2) conditions. X-ray diffraction and grain microanalyses using an electron probe microanalyzer and an energy dispersive X-ray analyzer revealed the existence of a pyrochlore-structured phase CaU(Ti3+, Ti4+)2O7, perovskite (Ca,U)(Ti3+,Ti4+)O3, barium-hollandite Ba1.14(Al3+, Ti3+)2.27Ti5.71O16, and uraninite (U,Ca,Ti)O2. Leach tests (modified MCC-1) carried out in a simulated Canadian shield groundwater at 90°C for 120 days revealed that barium was the only ion released into the leachants, with an initial leach rate of 2x 10-1 g · m-2. day-1 measured after a 3-day period. The leach rate dropped to 6 x 10-3 g.m-2.day-1 after 120 days of leaching. The concentrations of uranium and other simulated fission products in the leachants were below the detection limits of inductively coupled plasma spectrometry and atomic absorption techniques. The leach rates of uranium and titanium were estimated to be <6 x 10-5 and 3 x 10-5 g·m-2.day-1, respectively.