ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Supreme Court rules against Texas in interim storage case
The Supreme Court voted 6–3 against Texas and a group of landowners today in a case involving the Nuclear Regulatory Commission’s licensing of a consolidated interim storage facility for spent nuclear fuel, reversing a decision by the 5th Circuit Court of Appeals to grant the state and landowners Fasken Land and Minerals (Fasken) standing to challenge the license.
Robert E. Woodley, Robert E. Einziger, H. Craig Buchanan
Nuclear Technology | Volume 85 | Number 1 | April 1989 | Pages 74-88
Technical Paper | Nuclear Fuel | doi.org/10.13182/NT89-A34229
Articles are hosted by Taylor and Francis Online.
A series of pressurized water reactor spent-fuel samples from Turkey Point Unit 3 have been oxidized at temperatures between 140 and 225°C in air atmospheres with dew points between 14.5 and -70°C, using a thermogravimetric analysis system. Tests lasted between 400 and 2100 h. At the conclusion of a test, the atmosphere was sampled to determine the release of fission gas during testing, and the fuel samples were analyzed for microstructural changes. It appears that the mechanisms for oxidation of spent fuel to U3O7 takes place in two steps that occur somewhat simultaneously. Oxygen migrates along the grain boundaries, which are oxidized and enlarged. The grains oxidize by the inward progression of a layer of U4O9 saturated with oxygen. A simplified model of the mechanism, which considers oxygen diffusion through the product layer as the rate-controlling step, yields an activation energy of 113 ± 17 kJ/mol. Moisture, between dew points of —70 to +14.5°C, i.e., water vapor partial pressures varying over four orders of magnitude, had no significant effect on the oxidation rate.