ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Industry Update—May 2025
Here is a recap of industry happenings from the recent past:
TerraPower’s Natrium reactor advances on several fronts
TerraPower has continued making aggressive progress in several areas for its under-construction Natrium Reactor Demonstration Project since the beginning of the year. Natrium is an advanced 345-MWe reactor that has liquid sodium as a coolant, improved fuel utilization, enhanced safety features, and an integrated energy storage system, allowing for a brief power output boost to 500-MWe if needed for grid resiliency. The company broke ground for its first Natrium plant in 2024 near a retiring coal plant in Kemmerer, Wyo.
Timo A. Vanttola, Markku K. Rajamäki
Nuclear Technology | Volume 85 | Number 1 | April 1989 | Pages 33-74
Technical Paper | Nuclear Safety | doi.org/10.13182/NT89-A34225
Articles are hosted by Taylor and Francis Online.
Some of the most frequently presented scenarios for the initial power excursion of the Chernobyl accident are evaluated based on computer simulations. The applied transient model uses one-dimensional descriptions of the reactor core and the main flow circuit. According to the simulations, a slow flow decrease caused by gradual slowing down of the four main circulation pumps could have initiated the accident only if the void reactivity coefficient had been considerably larger than the original Soviet figure. On the other hand, a faster flow reduction, such as pump cavitation or deliberate stopping of even some of the pumps, would have produced enough void for prompt criticality. However, this scenario is sensitive to the size of the void coefficient and to the amount of flow reduction. The most probable initiator was considered to be the positive scram caused by the graphite followers of the manual control rods. Such a mechanism would naturally have brought the additional reactivity to the bottom half of the reactor, and the timing of the power surge would have been the reported one. The simulations indicated that the positive scram was possible only because of the double-humped axial power profile that probably prevailed in the reactor before the accident. The simulations also demonstrated the inability of the shutdown system in this sequence.