ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
Canada’s General Fusion to become publicly traded company
General Fusion has entered into a definitive business combination agreement with Spring Valley Acquisition Corp. (SVAC) that would make General Fusion the first publicly traded pure-play fusion firm, the company announced on January 22. The business combination is projected to be completed in mid-2026.
Kwang J. Jeong, Joon Lim, Il S. Hwang, Hee D. Kim, Martin M. Pilch, Tze Y. Chu
Nuclear Technology | Volume 143 | Number 3 | September 2003 | Pages 347-357
Technical Paper | Materials for Nuclear Systems | doi.org/10.13182/NT03-A3422
Articles are hosted by Taylor and Francis Online.
High-temperature creep tests were performed with an SA533B1 low-alloy steel under both constant load and constant stress conditions. Using the measured minimum creep strain rates as a function of stress and temperature, least-square fittings were made into a Bailey-Norton-type power law equation. Based on the constant stress test results, a constitutive equation was developed for steady-state creep. The constitutive equation was then implemented in elastic-viscoplastic analysis of the lower head of a pressurized water reactor's reactor pressure vessel using a commercial FEM code named ABAQUS 5.8. The FEM model was validated using measured data from the lower head failure experiment conducted at the Sandia National Laboratories. The FEM model using the creep constitutive equation was shown to be capable of accurately predicting the lower head deformation behavior. Additional work, however, is needed to rationalize apparent inconsistency between the constant load data and constant stress data.