ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
Selim Sancaktar, David R. Sharp
Nuclear Technology | Volume 84 | Number 3 | March 1989 | Pages 315-318
Technical Paper | Probabilistic Safety Assessment and Risk Management / Nuclear Safety | doi.org/10.13182/NT89-A34215
Articles are hosted by Taylor and Francis Online.
Probabilistic risk assessment (PRA) techniques and the lessons learned from previous PRA studies were used to evaluate the effectiveness of various design alternatives for the Westinghouse advanced pressurized water reactor design. This evaluation was done successfully at the design stage prior to the licensing stage and is probably the first example of such an application for a nuclear power plant design. Three measures of risk were utilized: plant core melt frequency per year, severe fission product release frequency per year, and economic risk to the plant owner in terms of present-day dollars. All plant configurations considered met or exceeded the safety criteria associated with regulatory requirements. The comparison of different alternatives was performed iteratively; after each iteration, the system most effective in reducing the total plant core melt frequency was chosen and added to the base plant configuration. The iterations were terminated when a predetermined cutoff level was reached. Probabilistic risk assessment techniques provide a viable method to create additional decision-making information at the plant design stage.