ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
Hymie Sol Shapiro, James Edward Smith
Nuclear Technology | Volume 84 | Number 3 | March 1989 | Pages 247-251
Technical Paper | Probabilistic Safety Assessment and Risk Management / Nuclear Safety | doi.org/10.13182/NT89-A34206
Articles are hosted by Taylor and Francis Online.
The procedures used by Atomic Energy of Canada Limited (AECL) to perform probabilistic safety assessments (PSAs) differ somewhat from conventionally accepted probabilistic risk assessment (PRA) procedures used elsewhere. In Canada, PSA is used by AECL as an audit tool for an evolving design. The purpose is to assess the safety of the plant in engineering terms. Thus, the PSA procedures are geared toward providing engineering feedback so that necessary changes can be made to the design at an early stage, input can be made to operating procedures, and test and maintenance programs can be optimized in terms of costs. Most PRAs, by contrast, are performed in plants that are already built. Their main purpose is to establish the core melt frequency and the risk to the public due to core melt. Also, any design modification is very expensive. The differences in purpose and timing between PSA and PRA have resulted in differences in methodology and scope. The PSA procedures are used on all plants being designed by AECL.