ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
Canada’s General Fusion to become publicly traded company
General Fusion has entered into a definitive business combination agreement with Spring Valley Acquisition Corp. (SVAC) that would make General Fusion the first publicly traded pure-play fusion firm, the company announced on January 22. The business combination is projected to be completed in mid-2026.
Chih-Tien Liu, Hund-Der Yeh
Nuclear Technology | Volume 143 | Number 3 | September 2003 | Pages 322-334
Technical Paper | Radioactive Waste Management and Disposal | doi.org/10.13182/NT03-A3420
Articles are hosted by Taylor and Francis Online.
This paper is to study the effects of fracture width on the transport of a radionuclide in a multiple and parallel fractured rock formation. The equation describing the transport of the radionuclide released from the geological repository includes the following mechanisms: advection, dispersion, radioactive decay, and adsorption on the fracture surfaces. The concentration at the inlet of each fracture is assumed constant. An analytical solution was derived based on such a mathematical model by the Laplace transform technique. The solution indicates that identical concentration distributions can be observed in each fracture of the equal-width parallel fractured system. In an unequal-width fractured system, the penetration distances along wide fractures are generally larger than that in a single uniform fractured system. The radionuclide concentration in the wide fracture quickly reaches source concentration in the near-field environment, confirming that the fracture width plays an important role in radionuclide transport through a system of multiple and parallel fractured media.