ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
Jeff Place on INPO’s strategy for industry growth
As executive vice president for industry strategy at the Institute of Nuclear Power Operations, Jeff Place leads INPO’s industry-facing work, engaging directly with chief nuclear officers.
Kazuhiko Akamine, K. J. Hofstetter, V. F. Baston
Nuclear Technology | Volume 84 | Number 2 | February 1989 | Pages 152-168
Technical Paper | Nuclear Safety | doi.org/10.13182/NT89-A34184
Articles are hosted by Taylor and Francis Online.
On commencing defueling operations in the Three Mile Island Unit 2 (TMI-2) reactor vessel damaged core region, the defueling water cleanup system (DWCS) encountered rapid plugging of its filter media. Characterization of the suspended material was an important task in resolving DWCS filtration difficulties. The characterization of the suspended material involved laboratory analyses of reactor vessel coolant samples collected from May through November 1986. The results of these characterizations indicated that the major elements present in the suspended particles were silver, aluminum, cadmium, iron, indium, silicon, uranium, and zirconium, all of which correspond to the five known source terms in the TMI-2 reactor vessel (control rod alloy, zeolite, diatomaceous earth, steel, fuel, and Zircaloy cladding). The particle analysis data indicate that the majority of particles were <5 µm and many of these suspended particles existed as colloidal particles; hence, these particulates are believed to have been the principal basis for filter plugging. In addition, based on these characterization data and data from previous analyses of reactor components, it was postulated that some mass fraction of the liquefied control rod alloy formed aerosols from mechanical formation due to high-velocity gas interaction with the moving liquid alloy.