ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Industry Update—May 2025
Here is a recap of industry happenings from the recent past:
TerraPower’s Natrium reactor advances on several fronts
TerraPower has continued making aggressive progress in several areas for its under-construction Natrium Reactor Demonstration Project since the beginning of the year. Natrium is an advanced 345-MWe reactor that has liquid sodium as a coolant, improved fuel utilization, enhanced safety features, and an integrated energy storage system, allowing for a brief power output boost to 500-MWe if needed for grid resiliency. The company broke ground for its first Natrium plant in 2024 near a retiring coal plant in Kemmerer, Wyo.
Kazuhiko Akamine, K. J. Hofstetter, V. F. Baston
Nuclear Technology | Volume 84 | Number 2 | February 1989 | Pages 152-168
Technical Paper | Nuclear Safety | doi.org/10.13182/NT89-A34184
Articles are hosted by Taylor and Francis Online.
On commencing defueling operations in the Three Mile Island Unit 2 (TMI-2) reactor vessel damaged core region, the defueling water cleanup system (DWCS) encountered rapid plugging of its filter media. Characterization of the suspended material was an important task in resolving DWCS filtration difficulties. The characterization of the suspended material involved laboratory analyses of reactor vessel coolant samples collected from May through November 1986. The results of these characterizations indicated that the major elements present in the suspended particles were silver, aluminum, cadmium, iron, indium, silicon, uranium, and zirconium, all of which correspond to the five known source terms in the TMI-2 reactor vessel (control rod alloy, zeolite, diatomaceous earth, steel, fuel, and Zircaloy cladding). The particle analysis data indicate that the majority of particles were <5 µm and many of these suspended particles existed as colloidal particles; hence, these particulates are believed to have been the principal basis for filter plugging. In addition, based on these characterization data and data from previous analyses of reactor components, it was postulated that some mass fraction of the liquefied control rod alloy formed aerosols from mechanical formation due to high-velocity gas interaction with the moving liquid alloy.