ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Industry Update—May 2025
Here is a recap of industry happenings from the recent past:
TerraPower’s Natrium reactor advances on several fronts
TerraPower has continued making aggressive progress in several areas for its under-construction Natrium Reactor Demonstration Project since the beginning of the year. Natrium is an advanced 345-MWe reactor that has liquid sodium as a coolant, improved fuel utilization, enhanced safety features, and an integrated energy storage system, allowing for a brief power output boost to 500-MWe if needed for grid resiliency. The company broke ground for its first Natrium plant in 2024 near a retiring coal plant in Kemmerer, Wyo.
Nikolay Ivanov Kolev
Nuclear Technology | Volume 83 | Number 1 | October 1988 | Pages 65-80
Technical Paper | Heat Transfer and Fluid Flow | doi.org/10.13182/NT88-A34176
Articles are hosted by Taylor and Francis Online.
High-pressure gas injection into a low-pressure liquid pool with a free surface in cylindrical geometry with internals was numerically simulated using the computer code IVA2/005. Bubble formation and pressure history as a function of time were predicted and compared with the experimental observation for a 0.6-MPa pressure source. A comparison with the previous prediction of a 1.1-MPa pressure source experiment is made. Numerical diffusion and flow pattern prediction influence the gas propagation, which influences in turn the sharpness of the predicted bubble and water surface and the pressure history in time. The same geometry, but with a gas, was computationally simulated. The comparison proves that the code integrator works well without a constitutive package. Methods to measure the reduction of numerical diffusion are proposed. Comparison with the tree acoustic experiments shows that IVA2 can simulate pressure wave phenomena in two-phase two-component mixtures with strong nonhomogeneity.