ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Supreme Court rules against Texas in interim storage case
The Supreme Court voted 6–3 against Texas and a group of landowners today in a case involving the Nuclear Regulatory Commission’s licensing of a consolidated interim storage facility for spent nuclear fuel, reversing a decision by the 5th Circuit Court of Appeals to grant the state and landowners Fasken Land and Minerals (Fasken) standing to challenge the license.
Tsutomu Sakurai, Akira Takahashi, Niro Ishikawa, Yoshihide Komaki
Nuclear Technology | Volume 83 | Number 1 | October 1988 | Pages 24-30
Technical Paper | Fuel Cycle | doi.org/10.13182/NT88-A34172
Articles are hosted by Taylor and Francis Online.
The composition of NOx generated in the dissolution of UO2 has been described in different ways by earlier authors. Finding a way to determine the NOx composition in the dissolution included experiments concerning the reactions of NO and NO2 with 3 to 6 M HNO3. The following conclusions have been obtained for the dissolution: (a) of the NOx, NO is the direct product of the dissolution [3UO2 + 8HNO3 → 3UO2(NO3)2 + 2NO + 4H2O]; (b) part of the NO is converted quickly to NO2 by the second reaction, i.e., NO + 2HNO3→ 3NO2 + H2O (the equilibrium constant of this reaction determines the NOx composition); (c) the dissolution is therefore expressible as 3UO2 + 4(2 + x)HNO3→3UO2(NO3)2 + 2(1 — x)NO + 6xNO2 + 2(2 + x)H2O, (0 < × < 1) (some values of the × were obtained); (d) the amount of NO2 in the NOx is considerably smaller than that reported by earlier authors, e.g., 25% for 6.7 MHNO3 at 101°C; (e) UO2(NO3)2 coexisting in the solution tends to increase the NO component in the NOx.