ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Shifting the paradigm of supply chain
Chad Wolf
When I began my nuclear career, I was coached up in the nuclear energy culture of the day to “run silent, run deep,” a mindset rooted in the U.S. Navy’s submarine philosophy. That was the norm—until Fukushima.
The nuclear renaissance that many had envisioned hit a wall. The focus shifted from expansion to survival. Many utility communications efforts pivoted from silence to broadcast, showcasing nuclear energy’s elegance and reliability. Nevertheless, despite being clean baseload 24/7 power that delivered a 90 percent capacity factor or higher, nuclear energy was painted as risky and expensive (alongside energy policies and incentives that favored renewables).
Economics became a driving force threatening to shutter nuclear power. The Delivering the Nuclear Promise initiative launched in 2015 challenged the industry to sustain high performance yet cut costs by up to 30 percent.
Tsutomu Sakurai, Akira Takahashi, Niro Ishikawa, Yoshihide Komaki
Nuclear Technology | Volume 83 | Number 1 | October 1988 | Pages 24-30
Technical Paper | Fuel Cycle | doi.org/10.13182/NT88-A34172
Articles are hosted by Taylor and Francis Online.
The composition of NOx generated in the dissolution of UO2 has been described in different ways by earlier authors. Finding a way to determine the NOx composition in the dissolution included experiments concerning the reactions of NO and NO2 with 3 to 6 M HNO3. The following conclusions have been obtained for the dissolution: (a) of the NOx, NO is the direct product of the dissolution [3UO2 + 8HNO3 → 3UO2(NO3)2 + 2NO + 4H2O]; (b) part of the NO is converted quickly to NO2 by the second reaction, i.e., NO + 2HNO3→ 3NO2 + H2O (the equilibrium constant of this reaction determines the NOx composition); (c) the dissolution is therefore expressible as 3UO2 + 4(2 + x)HNO3→3UO2(NO3)2 + 2(1 — x)NO + 6xNO2 + 2(2 + x)H2O, (0 < × < 1) (some values of the × were obtained); (d) the amount of NO2 in the NOx is considerably smaller than that reported by earlier authors, e.g., 25% for 6.7 MHNO3 at 101°C; (e) UO2(NO3)2 coexisting in the solution tends to increase the NO component in the NOx.