ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
OECD NEA meeting focuses on irradiation experiments
Members of the OECD Nuclear Energy Agency’s Second Framework for Irradiation Experiments (FIDES-II) joint undertaking gathered from September 29 to October 3 in Ketchum, Idaho, for the technical advisory group and governing board meetings hosted by Idaho National Laboratory. The FIDES-II Framework aims to ensure and foster competences in experimental nuclear fuel and structural materials in-reactor experiments through a diverse set of Joint Experimental Programs (JEEPs).
Jorma Jokiniemi
Nuclear Technology | Volume 83 | Number 1 | October 1988 | Pages 16-23
Technical Paper | Nuclear Safety | doi.org/10.13182/NT88-A34171
Articles are hosted by Taylor and Francis Online.
Fission products and other compounds released during severe nuclear power plant accidents will form aerosol particles, which include water-soluble compounds such as cesium hydroxide (CsOH), cesium carbonate, and cesium iodide. These hygroscopic particles will grow in a humid environment, and thus their settling rate is increased significantly at high relative humidities. This paper evaluates the hygroscopicity of CsOH and other water-soluble compounds released under severe accident conditions. The effect was incorporated into the kinetic particle growth model based on coupled mass and heat transport to evaluate the growth rates of single particles at different atmospheric conditions. Finally, the kinetic growth model for hygroscopic particles was included in the NAUA aerosol code to predict the general behavior of aerosols released into the containment atmosphere. A sensitivity analysis of this model was carried out to guide further work on important parameters and to decrease computing time. It is concluded that hygroscopic properties of radioactive cesium can, in favorable conditions, suppress the release of radioactive materials (source term) by orders of magnitude.