ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
Per G. Reinhall, Kwanhum Park, Robert W. Albrecht
Nuclear Technology | Volume 83 | Number 2 | November 1988 | Pages 197-204
Technical Paper | Nuclear Fuel | doi.org/10.13182/NT88-A34161
Articles are hosted by Taylor and Francis Online.
The next generation of liquid-metal fast breeder reactors will likely be passively safe designs in that the reactors will be able to survive a loss-of-flow transient without relying on active safety devices. Thermal distortion of the core assemblies is envisioned as one of the most important contributors to the passive negative reactivity feedback required to control the reactor. Development of these reactors requires that the shape of the distorted fuel assemblies be accurately predicted. It is common practice to use beam elements in the modeling of thermally distorted fuel assemblies. However, by using higher order finite element analysis, it is found that the accuracy of such beam element models are unsatisfactory and should only be used with caution. The investigation shows that this lack of accuracy can be largely overcome by a modification of the beam elements such that the moments created by the frictional contact forces are taken under consideration. In addition, investigation of the effect of the fuel pin bundle indicates that the thermal distortion of fuel assemblies can be made significantly more accurate by including the commonly neglected fuel pins.