ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Industry Update—May 2025
Here is a recap of industry happenings from the recent past:
TerraPower’s Natrium reactor advances on several fronts
TerraPower has continued making aggressive progress in several areas for its under-construction Natrium Reactor Demonstration Project since the beginning of the year. Natrium is an advanced 345-MWe reactor that has liquid sodium as a coolant, improved fuel utilization, enhanced safety features, and an integrated energy storage system, allowing for a brief power output boost to 500-MWe if needed for grid resiliency. The company broke ground for its first Natrium plant in 2024 near a retiring coal plant in Kemmerer, Wyo.
Per G. Reinhall, Kwanhum Park, Robert W. Albrecht
Nuclear Technology | Volume 83 | Number 2 | November 1988 | Pages 197-204
Technical Paper | Nuclear Fuel | doi.org/10.13182/NT88-A34161
Articles are hosted by Taylor and Francis Online.
The next generation of liquid-metal fast breeder reactors will likely be passively safe designs in that the reactors will be able to survive a loss-of-flow transient without relying on active safety devices. Thermal distortion of the core assemblies is envisioned as one of the most important contributors to the passive negative reactivity feedback required to control the reactor. Development of these reactors requires that the shape of the distorted fuel assemblies be accurately predicted. It is common practice to use beam elements in the modeling of thermally distorted fuel assemblies. However, by using higher order finite element analysis, it is found that the accuracy of such beam element models are unsatisfactory and should only be used with caution. The investigation shows that this lack of accuracy can be largely overcome by a modification of the beam elements such that the moments created by the frictional contact forces are taken under consideration. In addition, investigation of the effect of the fuel pin bundle indicates that the thermal distortion of fuel assemblies can be made significantly more accurate by including the commonly neglected fuel pins.