ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
OECD NEA meeting focuses on irradiation experiments
Members of the OECD Nuclear Energy Agency’s Second Framework for Irradiation Experiments (FIDES-II) joint undertaking gathered from September 29 to October 3 in Ketchum, Idaho, for the technical advisory group and governing board meetings hosted by Idaho National Laboratory. The FIDES-II Framework aims to ensure and foster competences in experimental nuclear fuel and structural materials in-reactor experiments through a diverse set of Joint Experimental Programs (JEEPs).
Mansur A. Alammar, Ronald V. Furia, Jimmy H. Chin, Chandrakant B. Mehta
Nuclear Technology | Volume 83 | Number 3 | December 1988 | Pages 353-366
Technical Paper | Fifth International Retran Meeting / Heat Transfer and Fluid Flow | doi.org/10.13182/NT88-A34148
Articles are hosted by Taylor and Francis Online.
The development of the Oyster Creek RETRAN licensing model is presented. A three-step program was followed, namely:Step 1. Model benchmark against start-up tests: The objective here was to assure model stability and to qualify different segments of the model against plant data. A best-estimate model was thus established at this stage. Nine start-up tests were used.Step 2. Assurance that the model has built-in conservatism with respect to the reload transients it is designed to analyze. Here, a sensitivity study was carried out on a number of parameters for the limiting reload transient for Oyster Creek [turbine trip without bypass (TTWOB)]. The impact on the critical power ratio was used as the primary measure. Results from this study were used in establishing a conservative set of parameters, an uncertainty margin, and a proper choice of code options. The implementation of these results established the licensing model.Step 3. Testing the licensing model response against vendor’s analyses for typical reload transients, namely, TTWOB, main steam isolation valve closure without scram, and feedwater controller failure in maximum demand. This methodology has been submitted for U.S. Nuclear Regulatory Commission approval.