ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
Mansur A. Alammar, Ronald V. Furia, Jimmy H. Chin, Chandrakant B. Mehta
Nuclear Technology | Volume 83 | Number 3 | December 1988 | Pages 353-366
Technical Paper | Fifth International Retran Meeting / Heat Transfer and Fluid Flow | doi.org/10.13182/NT88-A34148
Articles are hosted by Taylor and Francis Online.
The development of the Oyster Creek RETRAN licensing model is presented. A three-step program was followed, namely:Step 1. Model benchmark against start-up tests: The objective here was to assure model stability and to qualify different segments of the model against plant data. A best-estimate model was thus established at this stage. Nine start-up tests were used.Step 2. Assurance that the model has built-in conservatism with respect to the reload transients it is designed to analyze. Here, a sensitivity study was carried out on a number of parameters for the limiting reload transient for Oyster Creek [turbine trip without bypass (TTWOB)]. The impact on the critical power ratio was used as the primary measure. Results from this study were used in establishing a conservative set of parameters, an uncertainty margin, and a proper choice of code options. The implementation of these results established the licensing model.Step 3. Testing the licensing model response against vendor’s analyses for typical reload transients, namely, TTWOB, main steam isolation valve closure without scram, and feedwater controller failure in maximum demand. This methodology has been submitted for U.S. Nuclear Regulatory Commission approval.