ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
Tunc Aldemir, Giancarlo Torri, Marzio Marseguerra, Enrico Zio, Jeffrey A. Borkowski
Nuclear Technology | Volume 143 | Number 3 | September 2003 | Pages 247-255
Technical Paper | Fission Reactors | doi.org/10.13182/NT03-A3414
Articles are hosted by Taylor and Francis Online.
Estimation of xenon concentration at a given time instant is usually a difficult problem since the initial conditions are often unknown as well as a number of the model parameters. The feasibility of obtaining the model parameters of a point reactor xenon evolution model with genetic algorithms (GAs) has been investigated earlier using data obtained from a point reactor model under assumed conditions. Actual operational data from The Ohio State University Research Reactor (OSURR) and simulated operational data from the Oconee plant are used to extend this earlier work. It is shown that the point reactor model, joined with an efficient GA parameter estimation procedure, can be used for accurate prediction of global xenon evolution in small reactors (e.g., OSURR). It is also shown that this approach yields just qualitatively correct results in large reactors (e.g., Oconee) where spatial effects become significant. By continuously updating the model parameters obtained by GAs, xenon induced reactivity during transients can be estimated purely from the past reactivity and power data without a knowledge of initial conditions for 135Xe and 135I.