ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Supreme Court rules against Texas in interim storage case
The Supreme Court voted 6–3 against Texas and a group of landowners today in a case involving the Nuclear Regulatory Commission’s licensing of a consolidated interim storage facility for spent nuclear fuel, reversing a decision by the 5th Circuit Court of Appeals to grant the state and landowners Fasken Land and Minerals (Fasken) standing to challenge the license.
Mark F. Sulcoski, Kenneth W. Tobin, Jack S. Brenizer, Jr.
Nuclear Technology | Volume 82 | Number 3 | September 1988 | Pages 355-362
Technical Paper | Analyse | doi.org/10.13182/NT88-A34136
Articles are hosted by Taylor and Francis Online.
The University of Virginia’s real-time neutron radiography facility was characterized by measurement of the total neutron flux, gold/cadmium ratio, neutron/ gamma ratio, and the effective collimator length-to-aperture diameter (L/D) ratio. The real-time neutron imaging system and collimator were further characterized by measuring the modulation transfer function (MTF) of the system. The collimator effectiveness was measured by using the MTF to determine the “unparallelism” of the neutron beam. The MTF was also used to determine the effects of any reactor or beamport changes and to examine the effect of various system components on image quality. The computer-based image processing system allowed rapid calculation of the MTF and the collimator effectiveness. The results of these measurements, using no collimator and a simple tube collimator, demonstrated the method’s ability to determine the effective L/D ratio. The MTF measurement scheme provided a fast, reliable, and reproducible means of monitoring any changes in the real-time system, including both the neutron beam and the electronic components. The MTFs for various system components were measured using a separation technique. A parameter fN was used to give a quantitative measure of an individual system component’s performance.