ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Supreme Court rules against Texas in interim storage case
The Supreme Court voted 6–3 against Texas and a group of landowners today in a case involving the Nuclear Regulatory Commission’s licensing of a consolidated interim storage facility for spent nuclear fuel, reversing a decision by the 5th Circuit Court of Appeals to grant the state and landowners Fasken Land and Minerals (Fasken) standing to challenge the license.
Kazys K. Almenas, Yih-Yun Hsu, Marino Dimarzo, Zen-You Wang, Gary A. Pertmer, Richard Lee
Nuclear Technology | Volume 82 | Number 3 | September 1988 | Pages 341-354
Technical Paper | Heat Transfer and Fluid Flow | doi.org/10.13182/NT88-A34135
Articles are hosted by Taylor and Francis Online.
A sufficiently large data base of repeated integral thermal-hydraulic loop tests has been accumulated recently from which generalized conclusions can be drawn. Evidence obtained from experiments performed in the University of Maryland College Park (UMCP) loop show that qualitative as well as quantitative differences exist between integral and separate effect tests. For separate effect tests, flow conditions are controlled continuously and usually steady (or quasi-steady) states are of interest. Integral facilities are “closed” systems and reactor safety oriented investigations center on transient behavior for which only initial conditions can be specified. It is shown that integral flow systems have a generic capability of amplifying (or damping) small perturbations and usually can operate in one of several possible alternate flow states. These characteristics can lead to two distributions of interexperiment variations; the differences can follow a Gaussian distribution or a bifurcation. In the UMCP test program, several examples of repeat experiments whose trajectories fall outside a Gaussian distribution were observed. Such experimental results have implications for the planning of experimental test programs and for the verification process of computational models.