ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Canada clears Darlington to produce Lu-177 and Y-90
The Canadian Nuclear Safety Commission has amended Ontario Power Generation’s power reactor operating license for Darlington nuclear power plant to authorize the production of the medical radioisotopes lutetium-177 and yttrium-90.
George Tessler, Ben R. Beaudoin, William J. Beggs, Louis B. Freeman, Albert C. Kahler, William C. Schick, Jr.
Nuclear Technology | Volume 82 | Number 3 | September 1988 | Pages 275-289
Technical Paper | Nuclear Fuel | doi.org/10.13182/NT88-A34129
Articles are hosted by Taylor and Francis Online.
The light water breeder reactor (LWBR) was developed by the Bettis Atomic Power Laboratory under the technical direction of the Office of Naval Reactors, U.S. Department of Energy. The LWBR operated successfully in the Shippingport Atomic Power Station from 1977 to 1982, producing more than 29 000 equivalent full-power hours. Because of the small breeding gain (1.35%) predicted for this selfsustaining breeder, proof of breeding required accurate nondestructive assay of expended fuel from the LWBR. The fact that breeding has been proven in the LWBR means that this reactor provides a vast alternative energy resource using plentiful thorium fuel. A gauge, called the production irradiated fuel assay gauge (PIFAG), was developed to nondestructively assay whole irradiated fuel rods from the LWBR. The gauge uses the method of active interrogation with 252Cf source neutrons and delayed neutron counting. It is remotely operated inside a hot cell and has the capability to interrogate fuel rods with two different neutron energy spectra, one with primarily low-energy (<0.625-eV) neutrons and the second with the lowenergy neutrons removed. In addition to delayed neutron counting, the PIFAG has provision for counting 252Cf source neutrons close to the surface of a fuel rod during interrogation, and for gamma scanning the fuel rod. These data are used to calculate a selfshielding correction to the delayed neutron data. A description is given of the PIFAG, its calibration, and its application to the assay of irradiated LWBR fuel rods. A comparison of the PIFAG results with destructive assay results for 17 irradiated LWBR fuel rods shows that the two methods are in excellent agreement, differing by 0.069 and 0.162% for the lowand high-energy PIFAG interrogation spectra, respectively.