ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Ho Nieh nominated to the NRC
Nieh
President Trump recently nominated Ho Nieh for the role of commissioner in the Nuclear Regulatory Commission through the remainder of a term that will expire June 30, 2029.
Nieh has been the vice president of regulatory affairs at Southern Nuclear since 2021, though he is currently working as a loaned executive at the Institute of Nuclear Power Operations, where he has been for more than a year.
Nieh’s experience: Nieh started his career at the Knolls Atomic Power Laboratory, where he worked primarily as a nuclear plant engineer and contributed as a civilian instructor in the U.S. Navy’s Nuclear Power Program.
From there, he joined the NRC in 1997 as a project engineer. In more than 19 years of service at the organization, he served in a variety of key leadership roles, including division director of Reactor Projects, division director of Inspection and Regional Support, and director of the Office of Nuclear Reactor Regulation.
Alexandra Pudewills, Ekkehard Korthaus, Rainer H. Köster
Nuclear Technology | Volume 82 | Number 1 | July 1988 | Pages 71-80
Technical Paper | Radioactive Waste Management | doi.org/10.13182/NT88-A34118
Articles are hosted by Taylor and Francis Online.
The final disposal of high-level radioactive waste in a salt dome affects the thermomechanical behavior of the surrounding rock salt due to the temperature rise caused by the heat generation of the radioactive waste. The long-term safety analysis of the nuclear waste repository requires laboratory studies, in situtests, and the use of numerical calculations to predict the thermomechanical effects in the near and far fields of the repository. The near-field thermomechanical phenomena around several in situtemperature tests and a 300-m-deep conceptual borehole were studied numerically. Thermally induced closure of the boreholes and the strain-stress field distribution in the rock salt following the pressure load on the measuring probe surface and on the waste containers were determined. The calculations were performed with the commercial finite element program ADINA, taking into account the nonlinear and time-dependent behavior of the rock salt. The purpose of these investigations was a validation of the numerical methods, of the thermomechanical material parameters of rock salt, and of the model boundary conditions. The agreement between the results of the calculations and the measured values has shown that a relatively good prediction can be made of the thermomechanical effects in the near field of a waste disposal area with the numerical methods and the material laws used.